DC MICRO MOTORS
     
Basic Knowledge of Electromagnetic Force
  Electromagnetic Force
 
  The direction of magnetic flux produced by a permanent magnet is always from N-pole to S-pole. When a conductor is placed in a magnetic field and current flows in the conductor, the magnetic field and the current interact each other to produce force. The force is called "Electromagnetic force".
  The fleming's left hand rule  
  determines the direction of the current, the magnetic force and the flux. Stretch the thumb, the index finger and the middle finger of your left hand as shown in Fig. 2. When the middle finger is the current and the index finger the magnetic flux, the direction of the force is given by the thumb.
 
  Magnet field produced by current  
  The magnetic fields produced by the current and the permanent magnets works to produce electromagnetic force. When the current flows in the conductor toward the reader, the magnetic field in the CCW direction will be produced around the current
flow by the right-handed screw rule.
 
  Interference of a line of magnetic force  
  The magnetic fields produced by the current and the permanent magnets interfere each other. The line of magnetic force distributed in the same direction acts to increase its strength, while the flux distributed in the opposite direction acts to reduce its strength.
 
  Electromagnetic force production  
  The line of magnetic force has a nature to return to the straight line by its tension like an elastic band. Thus, the conductor is forced to move from where the magnetic force is stronger to where it is weaker.  
  Torque production  
 

Electromagnetic force is obtained from the equation;

 
  Fig.6 illustrates the torque obtained when a single-turn conductor is placed in the magnetic filed.
The torque produced by the single conductor is obtained from the equation;

 
  ¡@¡ET'(torque)
„H ¡@¡@¡@¡@¡@¡EF (force)
¡@¡@¡@¡@¡@„H ¡ER (distance from the center conductor)
   
 

Here, there are 2 conductors present.

   
About Motor
     
Basic Knowledge of Motor Performance
     
 
List of terms on motor performance
   
 
Term
Symbol
Unit
Various symbols and units are used to indicate motor performance. The figure provided above classifies them by input (electric energy) and output (mechanical energy). See the list on the left for the details.

(*1) It indicates what percentage of the electric energy
¡@¡@applied to the motor is used effectively as the ¡@¡@¡@¡@mechanical energy.
(*2) It means "revolutions per minute".

Input
P
W
Output
P
W
Maximum output
Pmax.
W
Voltage
V
V
Current
I
A
No-load current
I0
A
Stall current
Is
A
Efficiency (*1)
£b
%
Maximum efficiency
£bmax.
%
Speed
N
r/min (*2)
No-load speed
N0
r/min
Torque
T
mN¡Em, g¡Ecm
Stall torque
Ts
mN¡Em, g¡Ecm

Motor Types, Brush Materials and Sizes
 
This content shows the types of our motors. Our motor type code is based on the classification shown in this content.
  Motor-housing Shape    
 
Our motors are classified into three types by the motor-housing shapes of "Round type", "Flat type" and "Square type".
 
Round type
Flat type
Square type
   
  Size indication of each type is as follows.    
     
  Brush Materials    
  Brush is classified by the materials of the portion that has slide-contact with a commutator.
 
Metal Brush
The brush that integrates with a terminal easily and used mostly for our economical models. Also named sheet brush.
Precious Metal Brush
The brush for which special precious metal is employed at the slide-contact portion with the commutator, and mainly used for our motors with low current and low output under low voltage. Also named a fork brush by its shape.
Carbon Brush
The brush for which a carbon is employed at the slide-contact portion with the commutator and fixed to a elastic brush-arm to have electrical conduction, and mainly used for our motors with high current and high output under high voltage.
General Instructions for Use of EVERCOM DC Micro Motors
 
  1. If silicon materials, which contain low molecular silicon compounds, adhere to the motor's commutator,brush or other parts, then upon rectification of the electric energy the silicon breaks down into SiO2, SiC and other constituents which produce a rapid increase in the contact resistance between the commutator and brush. Therefore great care should be taken when silicon material is used in a unit and check well at the same time that such binding agents or sealing materials are not generating gases of detrimental nature, whether used for motor mounting or applied during your product assembles. Care must be taken for an optimum selection, especially when using those of cyanicadhesive and sulfur gas.
  2. When mounting your motors by means of binding agents, DON'T allow any adherence to the bearings nor intrusion into the motors.
  3. Axial thrust on the output shaft could have an adverse effect on the motor life. i. e. As is produced by worm gears, fans, etc., Check the service life expected under the actual operating conditions by testing the motors installed in your application products. For heavy thrust loads, consider using something mechanical to retain the shaft end.
  4. There are occasions when the internal resistance of the motor driving power source (Which contains an electrical circuit) can influence the life span of the motor. In instances where there is a low input of voltage to the motor,the internal resistance of the power source is large which may well result in an inferior motor after a short time, conversely in instances where high cyclic voltages are applied, this internal resistance is small and the motor life span is shortened. When the temperature deviates from the normal room temperature as is the case in low and high temperature situations, please note the conditions.
  5. Motor life may be affected adversely by heavy radial load such as produced by rotating eccentric cams, etc., and also by vibration given from outside. DO check over such negative factors by testing the motors to the actual operating conditions in your application products.
  6. If when mounting the motor and assembling the unit, equipment which emits ultrasonic waves is used there is a danger that some of the internal parts of the motor might be damaged so please take care.
  7. DON'T store motors under environmental conditions of high temperature and extreme humidity. DON'T keep them also in an atmosphere where corrosive gas may be present, as it may result in malfunction.
  8. Ambient and operating temperatures exert an affect more or less on motor performance and life. DO pay particular attention to the surroundings when it is hot and damp.
  9. When press fitting a pulley, gear etc., onto the motor output shaft, always support the shaft at the other end or its retaining metal pad in a proper and correct way.
  10. When soldering, BE SURE to finish your work quickly so as not to develop plastic deformation around the motor terminals nor to give them any forced bend or inward depression. In doing so, special care must be taken not to allow solder debris and flux to spatter into motors and precautionary measures should be taken if necessary, by covering up all the nearby holes and apertures. Any motors having snap-in terminals must also be attended carefully so as not to get flux in along the terminals, as it may cause failure in electrical conduction.
  11. DON'T leave motor shaft locked while power is applied, as even a short-time lock-up may cause excess heat build up resulting in burning damage to the motor depending on its specifications.
 
¡°For more information, please contact us directly by sales02@telstar-tech.com.tw or through our sales and representative offices overseas.
DC MICRO MOTOR CODING SYSTEM
 
DC MICRO MOTOR FOR GEARED MOTOR CODING SYSTEM
 
Evermo Micro electric motors: Powerful , Reliable , Cost effective
 
 
Typical Motor Performances
 
MODEL
SIZE (mm)
WEIGHT
VOLTAGE
NO LOAD
AT MAXIMUM EFFICIENCY
STALL
HOUSING
DIAMETER
HOUSING
LENGTH
OPERATING
RANGE
NOMINAL
SPEED
CURRENT
SPEED
CURRENT
TORQUE
OUTPUT
TORQUE
CURRENT
g
rpm
A
rpm
A
g¡Dcm
g¡Dcm
W
g¡Dcm
g¡Dcm
A
EFA-130RA-2270
15.1x£X20.1
25.0
17
1.5¡ã3.0
1.5V
9100
0.20
7000
0.66
6.0
0.59
0.43
26
2.55
2.20
EFA-260RA-2670
18.3x£X24.2
26.9
28
1.5¡ã3.0
3V
12100
0.21
10000
1.00
15
1.47
1.54
92
9.02
4.80
EFA-280RA-2865
18.3x£X24.2
30.5
35
1.5¡ã3.0
3V
10500
0.17
8800
0.89
18
1.76
1.62
114
11.2
4.68
EFF-M20VA-8Z130
8.0x£X10.0
15.0
4
2¡ã3
3V
15200
0.045
11800
0.16
1.6
0.16
0.19
8
0.78
0.55
EFF-N20PN-13115
10.0x£X12.0
15.0
5
1.5¡ã3.0
2.4V
15800
0.096
12200
0.33
2.8
0.27
0.35
13
1.27
1.15
EFF-N30VA-09210
10.0x£X12.0
20.0
7.5
2¡ã5
2.5V
5200
0.019
4000
0.066
1.8
0.18
0.074
8
0.78
0.23
EFF-030PK-08250
12.0x£X15.5
18.6
11
1¡ã6
2.5V
4100
0.028
2900
0.071
2.1
0.21
0.062
8
0.78
0.18
EFF-050SK-11170
12.0x£X15.5
26.9
18
1.5¡ã9.0
7V
10300
0.046
8500
0.17
7.0
0.69
0.31
46
4.51
0.82
EFF-110PH-08280
13.0x£X16.0
11.4
7.5
1¡ã3
3V
8000
0.031
5800
0.085
1.6
0.16
0.095
6
0.59
0.23
EFF-130SH-11340
15.4x£X20.4
25.1
24
3¡ã12
9V
7300
0.035
5900
0.15
12
1.18
0.73
67
6.57
0.68
EFF-170PA-3724
14.5x£X18.7
32.1
33
1.0¡ã1.5
1.2V
7800
0.33
6500
1.62
18
1.76
1.20
110
10.8
8.00
EFF-180SH-2657
15.4x£X20.4
32.1
32
1¡ã3
2.4V
7700
0.13
6400
0.70
15
1.47
1.19
107
10.5
3.80
EFF-270PA-4031
17.9x£X21.2
30.0
34
1.2¡ã2.0
1.2V
7000
0.70
5800
1.60
20
1.96
1.19
115
11.3
8.00
EFC-130RA-14150
15.1x£X20.1
25.0
17
4.5¡ã6.0
4.5V
13200
0.14
9900
0.42
7.5
0.74
0.76
30
2.94
1.25
EFC-260SA-2670
18.3x£X24.2
26.9
28
3¡ã6
4.5V
14000
0.27
11600
1.33
29
284
3.45
180
17.6
6.70
EFC-280PT-20150
18.3x£X24.2
30.5
35
9¡ã15
12V
12500
0.12
10500
0.67
40
3.92
4.31
270
26.5
3.70
EFC-280SA-18165
18.3x£X24.2
30.5
35
10¡ã15
12V
12400
0.10
10700
0.51
35
3.43
3.84
260
25.5
3.40
EFK-130RD-09490
15.4x£X20.4
25.0
24
9¡ã15
12V
8800
0.030
6800
0.11
8.0
0.78
0.56
38
3.72
0.38
EFK-130RH-09490
15.4x£X20.4
25.1
24
6¡ã18
12V
9000
0.034
6900
0.12
8.5
0.83
0.60
40
3.92
0.41
EFK-180SH-09450
15.4x£X20.4
32.1
32
12¡ã24
24V
9200
0.025
7700
0.11
20
1.96
1.58
130
12.7
0.63
EFK-260SA-09450
18.3x£X24.2
26.9
29
12¡ã24
12V
5700
0.030
4400
0.11
15
1.47
0.68
74
7.25
0.42
EFK-280PA-20150
18.3x£X24.2
30.5
36
10¡ã15
12V
12000
0.10
10300
0.70
45
4.41
4.75
325
31.9
3.80
ERE-140RA-2270
£X21.0
25.0
19
1.5¡ã3.0
1.5V
8100
0.21
6100
0.66
6.5
0.64
0.41
28
2.74
2.10
ERE-260RA-2670
£X23.8
26.9
28
1.5¡ã3.0
3V
12300
0.20
10100
0.97
15
1.47
1.55
90
8.82
4.73
ERD-280RA-2865
£X23.8
30.5
42
1.5¡ã3.0
3V
9200
0.16
7800
0.85
20
1.93
1.60
130
12.7
4.70
ERF-M50WA-1645
£X10.1
25.0
7.9
1.2¡ã2.4
2.4V
16700
0.075
13600
0.35
3.0
0.29
0.42
19
1.86
1.93
ERF-N30CA-11150
£X12.1
19.5
8
2¡ã5
5V+1£[
19900
0.075
14900
0.25
3.7
0.36
0.57
15
1.47
0.79
ERF-N60CA-1955
£X12.1
30.0
13
1¡ã3
2.4V
12700
0.13
10100
0.51
6.0
0.59
0.62
32
3.14
2.04
ERF-020TH-10210
£X17.1
18.0
16
2¡ã5
4.5V
12600
0.058
9500
0.18
3.9
0.38
0.38
16
1.57
0.59
ERF-130CH-12250
£X17.1
22.8
18
2.0¡ã7.5
3.5V
4700
0.028
3700
0.11
4.9
0.48
0.19
24
2.35
0.41
ERF-3LOPA-12330
£X24.4
10.3
18
1¡ã2
2V
3700
0.038
2700
0.11
3.1
0.30
0.086
12
1.18
0.31
ERF-300CA-14270
£X24.4
12.3
22
0.5¡ã0.4
1.9V
3500
0.032
2700
0.12
3.8
0.37
0.11
18
1.76
0.42
ERF-300PA-11400
£X24.4
12.3
22
1¡ã3
3V
3000
0.015
2400
0.065
4.3
0.42
0.11
23
2.25
0.28
ERF-310TA-11400
£X24.4
18.4
29
1¡ã6
2.5V
2800
0.017
2200
0.060
3.2
0.31
0.072
15
1.47
0.22
ERF-320CH-12400
£X24.4
18.4
28
1¡ã5
3V
2700
0.019
2300
0.060
4.0
0.39
0.094
26
2.55
0.30
ERF-330TA-11360
£X25.0
18.4
32
2¡ã6
3.4V
3400
0.015
2700
0.066
4.3
0.42
0.12
23
2.25
0.29
ERF-270RH-12370
£X24.4
30.8
51
6¡ã15
12V
6200
0.028
5100
0.14
19
1.86
0.99
115
11.3

0.70

ERF-370CA-15370
£X24.4
30.8
51
3¡ã12
12V
5600
0.025
4800
0.16
24
2.35
1.18
186
18.2
1.06
ERF-370CN-11670
£X24.4
30.8
51
6¡ã14
12V
3200
0.013
2600
0.067
17
1.67
0.45
106
10.4
0.35
ERF-410CA-12250
£X26.4
10.0
20
1¡ã2
1.9V
3700
0.029
2800
0.098
2.8
0.27
0.080
12
1.18
0.33
ERF-500TB-14415
£X32.0
19.5
45
1.5¡ã9.0
6V
3700
0.028
3000
0.13
14
1.37
0.43
84
8.23
0.65
ERD-180SA-2085
£X21.3
29.0
31
1.2¡ã4.5
2.4V
5300
0.052
4500
0.30
10
0.98
0.46
70
6.86
1.70
ERC-260RA-18130
£X23.8
26.9
28
4.5¡ã6.0
4.5V
9800
0.14
7700
0.53
15
1.47
1.18
72
7.06
2.00
ERC-280RA-2865
£X23.8
30.5
42
4.5¡ã6.0
4.5V
13600
0.27
11500
1.15
25
2.45
2.95
180
17.6
6.90
ERK-270RH-2680
£X24.4
30.8
51
3¡ã6
4.5V
10200
0.12
8700
0.90
30
2.94
2.68
185
18.1
5.30
ERK-370CA-18220
£X24.4
30.8
51
6¡ã15
9V
7000
0.060
6000
0.32
28
2.74
1.72
195
19.1
1.94
ERK-384CA-16170
£X24.4
36.0
56
24¡ã30
30V
21000
0.15
16700
0.58
58
5.68
9.93
290
28.4
2.28
ERK-P36CB-22210
£X60.7
25.4
260
9¡ã14
14V
2600
0.16
2100
0.58
200
19.6
4.31
1200
118
2.70
ERS-360SH-2885
£X27.7
32.6
55
3¡ã9
7.2V
12500
0.36
11000
1.30
50
4.90
5.64
420
41.2
8.60
ERS-365SA-1885
£X27.7
32.6
49
6¡ã20
20V
23200
0.24
18900
1.05
65
6.37
12.6
380
37.2
4.80
ERS-365SH-2080
£X27.7
32.6
54
6¡ã20
12V
12800
0.19
1400
0.83
55
5.93
5.87
305
29.9
3.60
       
 
 
Typical Motor Performances
 
MODEL
SIZE (mm)
WEIGHT
VOLTAGE
NO LOAD
AT MAXIMUM EFFICIENCY
STALL
HOUSING
DIAMETER
HOUSING
LENGTH
OPERATING
RANGE
NOMINAL
SPEED
CURRENT
SPEED
CURRENT
TORQUE
OUTPUT
TORQUE
CURRENT
g
rpm
A
rpm
A
g¡Dcm
g¡Dcm
W
g¡Dcm
g¡Dcm
A
ERS-380SH-4045
£X27.2
37.8
71
3¡ã9
7.2V
16200
0.50
14000
3.29
110
10.8
15.8
840
82.3
21.6
ERS-385SA-2073
£X27.2
37.8
62
9¡ã24
20V
18300
0.21
15800
0.90
75
7.35
12.2
550
53.9
5.40
ERS-285SH-2270
£X27.2
37.8
70
6¡ã24
20V
16400
0.18
1400
1.04
95
9.31
13.6
670
65.7
6.20
ERS-540SH-5045
£X35.8
50.0
160
4.5¡ã12
6V
8400
0.26
7200
3.91
220
21.6
16.2
1600
157
24.6
ERS-545SH-5018
£X35.8
50.0
156
4.5¡ã12
12V
24000
1.30
20600
7.50
300
29.4
63.4
2180
214
45.0
ERS-550SH-7522
£X35.8
57.0
215
3.6¡ã9.6
7.2V
15800
1.80
13500
10.9
410
40.0
66.4
2900
284
66.5
ERS-555SH-2670
£X35.8
57.0
209
9.6¡ã30
24V
9100
0.21
7800
1.27
280
27.4
22.4
2000
196
7.70
ERS-750SF-8027
£X42.2
60.0
270
6¡ã12
9.6V
18600
1.95
15900
11.8
520
51.0
84.8
3650
358
71.0
ERS-775SF-7513
£X42.2
67.0
320
6¡ã15
12V
18700
2.20
16000
13.6
710
69.6
117
5100
500
84.0
ERS-775VF-909
£X42.2
67.0
350
6¡ã12
12V
22600
4.50
18900
23.0
1000
98.0
194
6750
662
112
ERS-865WE-A012
£X42.1
67.0
370
6.0¡ã13.5
12V
17000
3.50
15000
18.0
1000
98.0
154
9300
911
135
ESU-020SA-1665
9.5x£X18.0
18.9
9.5
1.2¡ã1.5
1.5V
11700
1.71
8800
0.50
3.0
0.29
0.27
13
1.27
1.55
ESH-030SA-08240
9.5x£X18.0
18.9
11
6¡ã12
12V
22300
0.080
16700
0.24
7.0
0.69
1.20
29
2.84
0.72
EFK-290PY-051000
17.9x£X21.2
42.5
50
100¡ã120
100V
6700
0.005
5600
0.018
28
2.74
27.7
105
10.3
0.09
ERT-553PF-11100
£X35.7
57.0
190
100¡ã120
120V
13000
0.080
10800
0.36
250
24.5
840
1750
172
2.00
       
Electronic Governor Motors
 
MODEL
SIZE (m/m)
WEIGHT
RATED
VOLTAGE
WORKING
VOLTAGE
RATED LOAD
RATED
SPEED
RATED LOAD
CURRENT
LOAD
FLUCUATION (TYPE)
STARTING
TORQUE (MIN)
HOUSING
DIAMETER
HOUSING
LENGTH
g
g¡Dcm
mN¡Dm
rpm
mA (TYPE)
rpm/g¡Dcm
g¡Dcm
mN¡Dm
EEG-520ED(3B)
£X30.0
24.0
50
13.2
8.4¡ã16
10
0.98
2400¡Ó2%
74
2.5
60at8.4V
5.88at8.4V
EEG-530AD-6F(6B)
£X35.0
25.0
70
6
4.2¡ã7.5
8.0
0.78
2400¡Ó2%
132
9.0
38at4.2V
3.72at4.2V
EEG-530AD-9F(9B)
70
9
6¡ã11
8.0
0.78
2400¡Ó2%
92
9.0
50at 6.0V
4.90at6.0V
EEG-530AD-2F(2B)
70
12
8.4¡ã15
8.0
0.78
2400¡Ó2%
73
9.0
60at8.4V
5.88at8.4V
EEG-530KD-9F(9B)
£X35.0
25.0
70
9
6.3¡ã11.7
10
0.98
1600
109
5.0
40
3.92
3200
116
7.0
EEG-530KD-2F(2B)
70
12
8.4¡ã15.6
10
0.98
1600
83
5.0
50
4.90
3200
89
7.0
EEG-530YD-9BH
£X35.0
25.0
70
9
6.3¡ã11.7
10
0.98
2000
128
1.5
50
4.90
4000
140
4.0
EEG-530YD-2BH
70
12
8.4¡ã15.6
10
0.98

2000

99
1.5
55
5.39
4000
108
4.0
       
Synchronous Motors
 
MODEL
SIZE
VOLTAGE
FREQUENCY
SPEED
CURRENT
INPUT
PULL OUT TORQUE
OPERATING RANGE
NOMINAL
(m/m)
AC¡DV
AC¡DV
Hz
rpm
A
W
g¡Dcm
mN¡Dm
ECO-241PA-112700
27.2¡Ñ44.5¡Ñ32.8
220¡ã240
230
50
3000
0.10
10.0
330
32.3
ECO-261PA-122100
27.2¡Ñ44.5¡Ñ39.2
220¡ã240
230
50
3000
0.14
11.5
380
37.2
       
Power window-Lift Motors
 
MODEL
SIZE (m/m)
WEIGHT
VOLTAGE
NO LOAD
RATED LOAD (*)
STALL
HOUSING
DIAMETER
HOUSING
LENGTH
NOMINAL
SPEED
CURRENT
SPEED
CURRENT
CURRENT
TORQUE
rpm
A
rpm
A
A
Kg¡Dcm
mN¡Dm
EJC/LC-578VA-4720
30.3¡Ñ39.0
72.0
520
12V
92
1.30
58
6.40
24.0
93
9.12
EJD/LD-578VA-4720
515
(*)PATED LOAD = 30Kg.cm (2.94N.m)
 
Please contact sales02@telstar-tech.com.tw for more detailed technical spec. data/drawing

  DC MICRO GEARED MOTORS
SPEED AND LOAD CHARACTERISTICS
 
  • The relationship between torque vs speed and current is inear as showed left ;as the load on a motor in reases,Speed will decrease.
  • The graph pictured here represents the characteristics of a typical motor.
  • As long as the motor is used in the area of high efficiency (as repres- ented by the shaded area) long life and good performance can be expected. However, using the motor outside this range will result in high temperature rises and deterioration of motor parts.
If voltage in continuous applied to a motor in a locked rotor condition, the motor will heat up and fail in a relatively short time. Therefore it is important that there is some form of protection against high temperature rises.
A motor's basic rating point is slightly lower than its maximum efficiency point.
Load torque can be determined by measuring the current drawn when the motor is attached to a machine whose actual load value is known.
We will select the most suitable motor for your application after receiving your information.
   
AS APPLIED VOLTAGE WILL BE CHANGED
 
  • As shown left, if the applied voltage is changed, no load peed and starting torque also change in proportion to the voltage.
  • Speed characteristics at a given voltage are parallel to those at other voltages.
  • Thus, a DC motor can be used at a voltage lower than the rated voltage. But, below 1000 rpm, the speed becomes unstable, and the motor will not run smoothly.
CHARACTERISTICS AND RATED PERFORMANCE OF A GEARED MOTOR
  A. ex. EP-3529FA series DC motor only    
 
  • Speed reduction by means of a gear box results in increased torque.The reduction/increase is determined by the gear ratio and efficiency of the gear box.
  B. WITH 1/75 (4 stages) gearbox    
 

Over-all efficiency depends on the number of reduction stages : one average is 90% per stage. Therefore: a two stage reduction gives 90 90=80%;3 stages will be 72.9% and a 4-stage reduction 66%.The above mechanical loss effects the stall torque as shown left.Stall torque of a geared motor can be calculated using the following formula: -Motor stall torque gear ratio efficiency.

  C. ALLOWABLE TORQUE
 

The output loading on a gear box must never exceed the manufactures "specified rated torque" as this will cause premature gear failure.
It is particularly important to observe this at slow output speeds when the calculated output torque exceeds the specified rated torque.

GEARBOX CONTRUCTION AND FEATURES
  INTERMITTENT DUTY
(Suitable for less than 2sec.on & long enough off time)
STANDARD TYPE:GM30,GT30,GM33GM35,GM35,GM35B,GM37,GT38,GM56,GM90
 

STANDARD GEAR MECHANISM
Other than the output gear, the gears rotate around
a shaft that is fixed to the plate.

  HEAVY LOAD-self lubricatingTYPE:GM35P,GM38,GM50P,GM54,ST70
 

NON-LUBRICATED METAL BEARING GEAR MECHANISM
All gears, including the output gear, are attached to the shaft and supported by non-lubricated metal bearings. This type of mech-anism is suitable for medium load applications and continuous duty cycle operation

  LOW COST VERSION-Plastic or sintered metal TYPE:GM25N,GM27,GM35N,GM37,GM90N

  COMPACT SIZE TYPE: P16,P22,P24,P32,P39,P42,P52
 

PLANETARY GEAR MECHANISM
A heavy duty type gear mechanism using 3 mating gears to transmit torque to the output shaft. This type of mechanism is suitable for limited space applications

 
Protection against overload and locked rotor
 
  1. When the rotor is locked and voltage is applied to the motor terminals, the temperature of the motor windings will rise and eventually short-circuit.
  2. The time until a short-circuit condition appears differs per motor type.
    It is recommended that the motor is protected against such an overload by means of a fuse, current limiter or mechanical protection.
Protection against RFI/EMI caused by PWM control
 
  1. An internally installed suppressor reduces electrical commutation noise caused by the brushes. Depending on the requirements, extra precautions sometimes are recommended such as an external capacitor, or filter circuit.
  2. When driven in PWM at certain Frequencies it may occur that a motor does not start due to the combination of driving frequency and internally fitted capacitive noise suppressor.
Precautions for instantaneous reversing and dynamic braking
 
  1. When the power supply to the motor is switched off, it is advisable to allow the motor to stop rotating before reversing the supply polarity. Failure to do this will result in a very high instantaneous current.
  2. It is possible to stop the motor within a few revolutions by applying a short-circuit across the motor terminals immediately after the motor is switched off. This method is very effective but may shorten brush life.
Vertical mounting with shaft up
 
  1. In some cases when a motor-gear is mounted in this position, traces of lubrication oil can contaminate the brushes and commutator thus shortening brush life or causing a short-circuit. Please contact us when vertical mounting is required.
Speed detection and control
 
  1. A number of models can be provided with a magnetic or optical encoder.
  2. Please contact us for detailed information and assistance.
GEARHEAD CODING SYSTEM
 
 
 
 
Typical Specifications
 
MODEL
SIZE
VOLTAGE
RATIO
SPEED
(rpm)
Rated
Torque
(Kg-cm)
TYPE
GEARHEAD
SHAFT
GEARMOTOR
RANGE
Rated
GM12
Spur Gear
£X12¡ÑL13.9
£X2.0
£X12¡ÑL33.9
1.2-6V
3V
1/15¡V1/280
45¡V627
0.05-0.25
GM12F
Spur Gear
£X12¡ÑL9
£X3.0
£X12¡ÑL24.0
1.2-6V
4.5V
1/50¡V1/298
40¡V238
0.15-0.5
GM16
Spur Gear
£X16¡ÑL20.6
£X3.0
£X16¡ÑL47.5
3-12V
6V
1/10.24¡V1/540
20¡V1074
0.04-0.8
GM20
Spur Gear
£X20¡ÑL24.1
£X3.0
£X20¡ÑL56.2
3-24V
12V
1/10¡V1/6000
0.8¡V470
0.2-1.0
GT20
Spur Gear
£X20¡ÑL20
£X5.0
£X20¡ÑL49
3-24V
24V
1/20¡V1/500
26- 637
0.2-1.0
GT22
Spur Gear
£X22¡ÑL21
£X6.0
£X22¡ÑL40
3-24V
12V
1/10¡V1/200
38¡V754
0.1-1.5
GM25
Spur Gear
£X26.7¡ÑL18.2
£X4.0
£X26.7¡ÑL41.7
3-24V
6V
1/10¡V1/1000
5.6¡V560
0.1-2.0
GM27
Spur Gear
£X26.7¡ÑL19.4
£X4.0
£X26.7¡ÑL48.9
3-24V
12V
1/10¡V1/1000
7.4¡V740
0.1-2.0
GT27
Spur Gear
£X27¡ÑL20.3
£X3.0
£X27¡ÑL51.1
3-24V
24V
1/10¡V1/300
14¡V426
0.1-2.0
GM30
Spur Gear
£X30¡ÑL23
£X4.0
£X30¡ÑL55.6
3-24V
24V
1/10¡V1/300
17¡V500
0.15-3.5
GT30
Spur Gear
¡¼ 30¡ÑL25.6
£X5.0
¡¼ 30¡ÑL49.6
6-24V
24V
1/15¡V1/500
8.5¡V283
0.15-3.5
GM33
Spur Gear
£X34.9¡ÑL24.5
£X5.0
£X34.9¡ÑL53.5
6-24V
12V
1/10¡V1/3000
2¡V600
0.4-6.0
GM35
Spur Gear
£X37¡ÑL24.5
£X6.0
£X37¡ÑL54
6-24V
12V
1/10¡V1/3000
2¡V600
0.5-6.0
GM35B
Spur Gear
¡¼ 43¡ÑL25.8
£X6.0
¡¼ 43¡ÑL55.3
6-24V
12V
1/15¡V1/494.55
12¡V400
0.5-6.0
GM37
Spur Gear
£X37¡ÑL19.3
£X6.0
£X37¡ÑL48.8
6-24V
12V
1/10¡V1/3000
2¡V600
0.5-6.0
GT35
Spur Gear
£X37¡ÑL22.7
£X5.0
£X37¡ÑL51.7
6-24V
12V
1/9.9¡V1/2900
2.06¡V606
0.5-6.0
GM38
Spur Gear
¡¼ 42¡ÑL26
£X5.0
¡¼ 42¡ÑL86
110/220VAC
100V
1/3¡V1/150
10¡V500
2.0-10
GM38
Spur Gear
¡¼ 42¡ÑL28.7
£X5.0
¡¼ 42¡ÑL68.7
6-24V
24V
1/10¡V1/3000
2¡V600
2.0-10
GT38
Spur Gear
¡¼ 38¡ÑL25.7
£X6.0
¡¼ 38¡ÑL55.2
6-24V
12V
1/10¡V1/900
6.7¡V600
0.5-7.0
GM48
Spur Gear
£X48¡ÑL16
£X7.0
£X48¡ÑL44
110/220VAC
220V
1/10¡V1/100
1¡V60
7.0-10.0
GM48P
Spur Gear
£X62¡Ñ65¡ÑL16
£X6.0
£X62.31¡ÑL39.7
6-24V
24V
1/10¡V1/3000
1.0¡V300
0.1-1.5
GM50
Spur Gear
£X50¡ÑL34.5
£X6.35
£X50¡ÑL92.5
12-24V
24V
1/12.67¡V1/152
28¡V332
1.5-10.0
GM54
Spur Gear
¡¼ 60¡ÑL38.9
£X8.0
¡¼ 60¡ÑL98.9
12-100V DC
12V
1/20¡V1/160
33¡V265
4.5-20.0
GM56
Spur Gear
¡¼ 56¡ÑL100
£X8.0
¡¼ 56¡ÑL60.5
12-24V
12/24V
1/20¡V1/300
2¡V300
5.0-20.0
ST70
Spur Gear
¡¼ 70¡ÑL100
£X12
¡¼ 70¡ÑL93
12-100V DC
24V
1/60¡V1/800
3.4¡V92.3
2.5-10.0
GM90
Spur Gear
¡¼ 40¡ÑL90
£X8.0
¡¼ 40¡ÑL49.5
12-24V
24V
1/36¡V1/500
10¡V138
5.0-20.0
P16
Spur Gear
£X16¡ÑL26
£X3.0
£X16¡ÑL46
3-24V
12V
1/4¡V1/2000
3¡V1500
1.0-3.0
P22
Planetary
£X22¡ÑL25.5
£X3.0
£X22¡ÑL54.5
3-24V
12V
1/4.5¡V1/483.66
11¡V1133
0.1-1.5
P22S
Planetary
£X22¡ÑL26
£X4.0
£X22¡ÑL60
3-24V
12V
1/4¡V1/2000
3¡V1500
3.0-9.0
P24
Planetary
£X23.7¡ÑL43.6
£X5.0
£X23.7¡ÑL72.6
3-24V
12V
1/4.5¡V1/242.79
24.0¡V1287
0.1-2.0
P32
Planetary
£X32¡ÑL36
£X6.0
£X32¡ÑL62
3-24V
12V
1/5¡V1/720
7¡V1000
6.0-36.0
P39
Planetary
£X39¡ÑL29
£X6.0
£X39¡ÑL46.5
12-24V
12/24V
1/10¡V1/300
163¡V570
0.5-6.0
P42
Planetary
£X42¡ÑL60
£X8.0
£X42¡ÑL128
6-24V
12V
1/4¡V1/3600
1.0¡V1250
15.0-90.0
P43
Planetary
¡¼43¡ÑL32.7
£X8.0
¡¼43¡ÑL82.7
6-24V
12V
1/14¡V1/864
5.6¡V346
1.0-20.0
P52
Planetary
£X52¡ÑL58.45
£X12
£X52¡ÑL120.95
12-100V DC
24V
1/10¡V1/180
16¡V250
5.0-30.0
 
Copyright © 2010 Formosa Servo Electric Motor Co., Ltd/EVERMO Group. All Rights Reserved. Please contact sales02@telstar-tech.com.tw for more detailed technical spec. data/drawing
 
  ¡@¡@¡@¡@¡@¡@¡@¡@¡@¡@¡@SQUARE&SLIM SIZE GEARED MOTORS
 
AC SHADE POLE GEARED MOTOR Typical Specifications
 
MODEL
SIZE
VOLTAGE
RATIO
SPEED
(rpm)
Rated
Torque
(Kg-cm)
TYPE
GEARHEAD
SHAFT
GEARMOTOR
RANGE
ST60
Spur Gear
¡¼60¡Ñ97 X L 20
£X8.0
¡¼60¡Ñ69¡ÑL 83
AC110/220V,60Hz
1/10¡V1/ 850
4- 342
5.0¡V30.0
ST73
Spur Gear
¡¼73¡Ñ95 X L 20
£X10.0
¡¼73¡Ñ95¡ÑL 105
AC110/220V,60Hz
1/30-1/ 300
12-123
10.0¡V90.0
ST76-A
Spur Gear
¡¼76¡Ñ60 X L 15
£X8.0
¡¼76¡Ñ60¡ÑL 60
AC110/220V,60Hz
1/50-1/ 560
6-68
1.0¡V6.0
ST76-B
Spur Gear
¡¼76¡Ñ64 X L 20
£X8.0
¡¼76¡Ñ64¡ÑL 80
AC110/220V,60Hz
1/14¡V1/ 580
6-248
2.0¡V20.0
ST76-C
Spur Gear
¡¼76¡Ñ69 X L 20
£X8.0
¡¼76¡Ñ69¡ÑL 80
AC110/220V,60Hz
1/10-1/ 500
6-342
5.0¡V30.0
ST76-D
Spur Gear
¡¼76¡Ñ136 X L 26
£X10.0
¡¼76¡Ñ136 X L 26
AC110/220V,60Hz
1/165-1/ 1100
3-20
20.0¡V50.0
 
PMDC GEARED MOTOR Typical Specifications
 
MODEL
SIZE
VOLTAGE
RATIO
SPEED
(rpm)
Rated
Torque
(Kg-cm)
TYPE
GEARHEAD
SHAFT
GEARMOTOR
RANGE
Rated
ST60
Spur Gear
¡¼60¡Ñ97 X L 20
£X8.0
¡¼60¡Ñ69¡ÑL 78
12- 48V
24VDC
1/10 ¡V1/ 850
6 - 500
5.0 ¡V 30.0
ST70
Spur Gear
¡¼70¡Ñ26 xL100
£X12
¡¼ 70¡Ñ26 xL93
12-100V
24VDC
1/60¡V1/800
3.4¡V92.3
5.0 ¡V30.0
ST73
Spur Gear
¡¼73¡Ñ95 X L 20
£X10.0
¡¼73¡Ñ95¡ÑL 90
12- 48V
24VDC
1/30-1/ 300
17-166
10.0¡V 90.0
ST76-A
Spur Gear
¡¼76¡Ñ60 X L 15
£X8.0
¡¼76¡Ñ60¡ÑL 60
12- 48V
24VDC
1/50-1/ 560
9 - 100
1.0¡V 6.0
ST76-B
Spur Gear
¡¼76¡Ñ64 X L 20
£X8.0
¡¼76¡Ñ64¡ÑL 80
12- 48V
24VDC
1/14¡V1/ 580
9 - 360
2.0¡V20.0
ST76-C
Spur Gear
¡¼76¡Ñ69 X L 20
£X8.0
¡¼76¡Ñ69¡ÑL 80
12- 48V
24VDC
1/30-1/ 300
17 - 167
5.0¡V30.0
ST76-D
Spur Gear
¡¼76¡Ñ136 X L 26
£X10.0
¡¼76¡Ñ136 X L 26
12- 48V
24VDC
1/165-1/ 1100
4.5 -30
20.0¡V50.0
 
Copyright © 2010 Formosa Servo Electric Motor Co., Ltd/EVERMO Group. All Rights Reserved Please contact sales02@telstar-tech.com.tw for more detailed technical spec. data/drawing

  ¡@¡@¡@¡@¡@¡@¡@¡@¡@ HIGH DURIBILITY PMDC MICRO MOTORS
 

FEATURE :


  • Compact Size (£X22~50 mm )
  • High Moto-Technology Design.
  • LOW-COG brush-commutated motors provide high performance at an excellent value.
  • Servo Motor feature with 7 or 11 slot armature with 4 standard windings for each item.
  • Skewed armatures that reduce cogging and resinimpregnated windings for greater reliability.
  • All the specification In accord with JIS & CE standard.
  FOR OEM ORDERS ONLY !!    
 
NOTICE : EVERMO High Duribilty PMDC Micro Motor is only for customer's OEM/ODM orders, so pls contact with our sales engineer by sales02@telstar-tech.com.tw before your samples order released !! Thank you very much !

   
 
Copyright © 2010 Formosa Servo Electric Motor Co., Ltd/EVERMO Group. All Rights Reserved
Please contact sales02@telstar-tech.com.tw for more detailed technical spec. data/drawing